91 research outputs found

    CRAID: Online RAID upgrades using dynamic hot data reorganization

    Get PDF
    Current algorithms used to upgrade RAID arrays typically require large amounts of data to be migrated, even those that move only the minimum amount of data required to keep a balanced data load. This paper presents CRAID, a self-optimizing RAID array that performs an online block reorganization of frequently used, long-term accessed data in order to reduce this migration even further. To achieve this objective, CRAID tracks frequently used, long-term data blocks and copies them to a dedicated partition spread across all the disks in the array. When new disks are added, CRAID only needs to extend this process to the new devices to redistribute this partition, thus greatly reducing the overhead of the upgrade process. In addition, the reorganized access patterns within this partition improve the array’s performance, amortizing the copy overhead and allowing CRAID to offer a performance competitive with traditional RAIDs. We describe CRAID’s motivation and design and we evaluate it by replaying seven real-world workloads including a file server, a web server and a user share. Our experiments show that CRAID can successfully detect hot data variations and begin using new disks as soon as they are added to the array. Also, the usage of a dedicated partition improves the sequentiality of relevant data access, which amortizes the cost of reorganizations. Finally, we prove that a full-HDD CRAID array with a small distributed partition (<1.28% per disk) can compete in performance with an ideally restriped RAID-5 and a hybrid RAID-5 with a small SSD cache.Peer ReviewedPostprint (published version

    Scalability in extensible and heterogeneous storage systems

    Get PDF
    The evolution of computer systems has brought an exponential growth in data volumes, which pushes the capabilities of current storage architectures to organize and access this information effectively: as the unending creation and demand of computer-generated data grows at an estimated rate of 40-60% per year, storage infrastructures need increasingly scalable data distribution layouts that are able to adapt to this growth with adequate performance. In order to provide the required performance and reliability, large-scale storage systems have traditionally relied on multiple RAID-5 or RAID-6 storage arrays, interconnected with high-speed networks like FibreChannel or SAS. Unfortunately, the performance of the current, most commonly-used storage technology-the magnetic disk drive-can't keep up with the rate of growth needed to sustain this explosive growth. Moreover, storage architectures based on solid-state devices (the successors of current magnetic drives) don't seem poised to replace HDD-based storage for the next 5-10 years, at least in data centers. Though the performance of SSDs significantly improves that of hard drives, it would cost the NAND industry hundreds of billions of dollars to build enough manufacturing plants to satisfy the forecasted demand. Besides the problems derived from technological and mechanical limitations, the massive data growth poses more challenges: to build a storage infrastructure, the most flexible approach consists in using pools of storage devices that can be expanded as needed by adding new devices or replacing older ones, thus seamlessly increasing the system's performance and capacity. This approach however, needs data layouts that can adapt to these topology changes and also exploit the potential performance offered by the hardware. Such strategies should be able to rebuild the data layout to accommodate the new devices in the infrastructure, extracting the utmost performance from the hardware and offering a balanced workload distribution. An inadequate data layout might not effectively use the enlarged capacity or better performance provided by newer devices, thus leading to unbalancing problems like bottlenecks or resource underusage. Besides, massive storage systems will inevitably be composed of a collection of heterogeneous hardware: as capacity and performance requirements grow, new storage devices must be added to cope with demand, but it is unlikely that these devices will have the same capacity or performance of those installed. Moreover, upon failure, disks are most commonly replaced by faster and larger ones, since it is not always easy (or cheap) to find a particular model of drive. In the long run, any large-scale storage system will have to cope with a myriad of devices. The title of this dissertation, "Scalability in Extensible and Heterogeneous Storage Systems", refers to the main focus of our contributions in scalable data distributions that can adapt to increasing volumes of data. Our first contribution is the design of a scalable data layout that can adapt to hardware changes while redistributing only the minimum data to keep a balanced workload. With the second contribution, we perform a comparative study on the influence of pseudo-random number generators in the performance and distribution quality of randomized layouts and prove that a badly chosen generator can degrade the quality of the strategy. Our third contribution is an an analysis of long-term data access patterns in several real-world traces to determine if it is possible to offer high performance and a balanced load with less than minimal data rebalancing. In our final contribution, we apply the knowledge learnt about long-term access patterns to design an extensible RAID architecture that can adapt to changes in the number of disks without migrating large amounts of data, and prove that it can be competitive with current RAID arrays with an overhead of at most 1.28% the storage capacity.L'evolució dels sistemes de computació ha dut un creixement exponencial dels volums de dades, que porta al límit la capacitat d'organitzar i accedir informació de les arquitectures d'emmagatzemament actuals. Amb una incessant creació de dades que creix a un ritme estimat del 40-60% per any, les infraestructures de dades requereixen de distribucions de dades cada cop més escalables que puguin adaptar-se a aquest creixement amb un rendiment adequat. Per tal de proporcionar aquest rendiment, els sistemes d'emmagatzemament de gran escala fan servir agregacions RAID5 o RAID6 connectades amb xarxes d'alta velocitat com FibreChannel o SAS. Malauradament, el rendiment de la tecnologia més emprada actualment, el disc magnètic, no creix prou ràpid per sostenir tal creixement explosiu. D'altra banda, les prediccions apunten que els dispositius d'estat sòlid, els successors de la tecnologia actual, no substituiran els discos magnètics fins d'aquí 5-10 anys. Tot i que el rendiment és molt superior, la indústria NAND necessitarà invertir centenars de milions de dòlars per construir prou fàbriques per satisfer la demanda prevista. A més dels problemes derivats de limitacions tècniques i mecàniques, el creixement massiu de les dades suposa més problemes: la solució més flexible per construir una infraestructura d'emmagatzematge consisteix en fer servir grups de dispositius que es poden fer créixer bé afegint-ne de nous, bé reemplaçant-ne els més vells, incrementant així la capacitat i el rendiment del sistema de forma transparent. Aquesta solució, però, requereix distribucions de dades que es puguin adaptar a aquests canvis a la topologia i explotar el rendiment potencial que el hardware ofereix. Aquestes distribucions haurien de poder reconstruir la col.locació de les dades per acomodar els nous dispositius, extraient-ne el màxim rendiment i oferint una càrrega de treball balancejada. Una distribució inadient pot no fer servir de manera efectiva la capacitat o el rendiment addicional ofert pels nous dispositius, provocant problemes de balanceig com colls d¿ampolla o infrautilització. A més, els sistemes d'emmagatzematge massius estaran inevitablement formats per hardware heterogeni: en créixer els requisits de capacitat i rendiment, es fa necessari afegir nous dispositius per poder suportar la demanda, però és poc probable que els dispositius afegits tinguin la mateixa capacitat o rendiment que els ja instal.lats. A més, en cas de fallada, els discos són reemplaçats per d'altres més ràpids i de més capacitat, ja que no sempre és fàcil (o barat) trobar-ne un model particular. A llarg termini, qualsevol arquitectura d'emmagatzematge de gran escala estarà formada per una miríade de dispositius diferents. El títol d'aquesta tesi, "Scalability in Extensible and Heterogeneous Storage Systems", fa referència a les nostres contribucions a la recerca de distribucions de dades escalables que es puguin adaptar a volums creixents d'informació. La primera contribució és el disseny d'una distribució escalable que es pot adaptar canvis de hardware només redistribuint el mínim per mantenir un càrrega de treball balancejada. A la segona contribució, fem un estudi comparatiu sobre l'impacte del generadors de números pseudo-aleatoris en el rendiment i qualitat de les distribucions pseudo-aleatòries de dades, i provem que una mala selecció del generador pot degradar la qualitat de l'estratègia. La tercera contribució és un anàlisi dels patrons d'accés a dades de llarga duració en traces de sistemes reals, per determinar si és possible oferir un alt rendiment i una bona distribució amb una rebalanceig inferior al mínim. A la contribució final, apliquem el coneixement adquirit en aquest estudi per dissenyar una arquitectura RAID extensible que es pot adaptar a canvis en el número de dispositius sense migrar grans volums de dades, i demostrem que pot ser competitiva amb les distribucions ideals RAID actuals, amb només una penalització del 1.28% de la capacita

    Reliable and randomized data distribution strategies for large scale storage systems

    Get PDF
    The ever-growing amount of data requires highly scalable storage solutions. The most flexible approach is to use storage pools that can be expanded and scaled down by adding or removing storage devices. To make this approach usable, it is necessary to provide a solution to locate data items in such a dynamic environment. This paper presents and evaluates the Random Slicing strategy, which incorporates lessons learned from table-based, rule-based, and pseudo-randomized hashing strategies and is able to provide a simple and efficient strategy that scales up to handle exascale data. Random Slicing keeps a small table with information about previous storage system insert and remove operations, drastically reducing the required amount of randomness while delivering a perfect load distribution.Peer ReviewedPostprint (author’s final draft

    GekkoFS: A temporary burst buffer file system for HPC applications

    Get PDF
    Many scientific fields increasingly use high-performance computing (HPC) to process and analyze massive amounts of experimental data while storage systems in today’s HPC environments have to cope with new access patterns. These patterns include many metadata operations, small I/O requests, or randomized file I/O, while general-purpose parallel file systems have been optimized for sequential shared access to large files. Burst buffer file systems create a separate file system that applications can use to store temporary data. They aggregate node-local storage available within the compute nodes or use dedicated SSD clusters and offer a peak bandwidth higher than that of the backend parallel file system without interfering with it. However, burst buffer file systems typically offer many features that a scientific application, running in isolation for a limited amount of time, does not require. We present GekkoFS, a temporary, highly-scalable file system which has been specifically optimized for the aforementioned use cases. GekkoFS provides relaxed POSIX semantics which only offers features which are actually required by most (not all) applications. GekkoFS is, therefore, able to provide scalable I/O performance and reaches millions of metadata operations already for a small number of nodes, significantly outperforming the capabilities of common parallel file systems.Peer ReviewedPostprint (author's final draft

    Vegetative development of arabica coffee plants grafted onto robusta coffee, subjected to water replacement

    Get PDF
    O objetivo deste trabalho foi avaliar o crescimento de plantas de café arábica (Coffea arabica) enxertadas sobre café robusta (C. canephora), submetidas a diferentes níveis de reposição de água. O experimento foi realizado em Lavras, MG, em delineamento experimental de blocos ao acaso, em arranjo fatorial 2x2x5, com quatro repetições. Foram feitas avaliações em: duas cultivares de C. arabica – Catuaí IAC-99 e Topázio MG-1190 –, dois tipos de plantas – pé-franco e enxertadas sobre C. canephora 'Apoatã IAC-2258' – e cinco níveis de reposição de água – testemunha sem irrigação e quatro coeficientes de cultura, nos valores 0,2, 0,3, 0,4 e 0,5, do plantio até 24 meses, e 0,4, 0,6, 0,8 e 1,0, de 24 a 29 meses –. Utilizou‑se turno de rega fixo, com irrigações às terças e às sextas-feiras. Foram avaliados: altura de plantas, diâmetro de copa e diâmetro de caule. Cafeeiros enxertados têm menor crescimento em comparação aos de pé-franco, no período de implantação da lavoura. A substituição do sistema radicular de C. arabica por C. canephora não altera a resposta das plantas à irrigação.The objective of this work was to evaluate the vegetative growth of Arabica coffee (Coffea arabica) plants grafted onto robusta coffee (C. canephora), subjected to different levels of water replacement. The experiment was carried out in Lavras, MG, Brazil, in a complete randomized block design, with a 2x2x5 factorial arrangement and four replicates. Evaluations were done for: two cultivars of C. arabica – Catuaí IAC-99 and Topázio MG-1190 –, two types of plants – ungrafted and grafted onto C. canephora 'Apoatã IAC-2258' –, and five levels of water replacement – the control without irrigation, and four crop coefficients with values of 0.2, 0.3, 0.4, and 0.5 from planting to 24 months, and of 0.4, 0.6, 0.8, and 1.0 from 24 to 29 months –. A fixed watering shift was used, with irrigations on Tuesdays and on Fridays. Plant height, and crown and stem diameters were evaluated. Grafted trees have lower growth compared to the ungrafted ones, during the establishment of the crop. The replacement of the root system of C. arabica by C. canephora does not alter the response of plants to irrigation

    Potential effects of delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside of Hibiscus sabdariffa L. on ruminant meat and milk quality

    Get PDF
    El articulo esta publicado en una revista de Open accessThe objective was to review the potential effects of adding anthocyanin delphinidin-3-O-sambubioside (DOS) and cyanidin-3-O-sambubioside (COS) of HS in animal diets. One hundred and four scientific articles published before 2021 in clinics, pharmacology, nutrition, and animal production were included. The grains/concentrate, metabolic exigency, and caloric stress contribute to increasing the reactive oxygen species (ROS). COS and DOS have antioxidant, antibacterial, antiviral, and anthelmintic activities. In the rumen, anthocyanin might obtain interactions and/or synergisms with substrates, microorganisms, and enzymes which could affect the fiber degradability and decrease potential methane (CH4) emissions; since anthocyanin interferes with ruminal fatty acids biohydrogenation (BH), they can increase the n-3 and n-6 polyunsaturated fatty acids (PUFA), linoleic acid (LA), and conjugated linoleic acid (CLA) in milk and meat, as well as improving their quality. Anthocyanins reduce plasma oxidation and can be deposited in milk and meat, increasing antioxidant activities. Therefore, the reduction of the oxidation of fats and proteins improves shelf-life. Although studies in ruminants are required, COS and DOS act as inhibitors of the angiotensin-converting enzyme (ACEi) and rennin expression, regulating the homeostatic control and possibly the milk yield and body weight. By-products of HS contain polyphenols as calyces with positive effects on the average daily gain and fat meat quality

    Longitudinal association of dietary acid load with kidney function decline in an older adult population with metabolic syndrome

    Full text link
    Background: Diets high in acid load may contribute to kidney function impairment. This study aimed to investigate the association between dietary acid load and 1-year changes in glomerular filtration rate (eGFR) and urine albumin/creatinine ratio (UACR). Methods: Older adults with overweight/obesity and metabolic syndrome (mean age 65 ± 5 years, 48% women) from the PREDIMED-Plus study who had available data on eGFR (n = 5,874) or UACR (n = 3,639) at baseline and after 1 year of follow-up were included in this prospective analysis. Dietary acid load was estimated as potential renal acid load (PRAL) and net endogenous acid production (NEAP) at baseline from a food frequency questionnaire. Linear and logistic regression models were fitted to evaluate the associations between baseline tertiles of dietary acid load and kidney function outcomes. One year-changes in eGFR and UACR were set as the primary outcomes. We secondarily assessed ≥ 10% eGFR decline or ≥10% UACR increase. Results: After multiple adjustments, individuals in the highest tertile of PRAL or NEAP showed higher one-year changes in eGFR (PRAL, β: -0.64 ml/min/1.73 m2; 95% CI: -1.21 to -0.08 and NEAP, β: -0.56 ml/min/1.73 m2; 95% CI: -1.13 to 0.01) compared to those in the lowest category. No associations with changes in UACR were found. Participants with higher levels of PRAL and NEAP had significantly higher odds of developing ≥10% eGFR decline (PRAL, OR: 1.28; 95% CI: 1.07-1.54 and NEAP, OR: 1.24; 95% CI: 1.03-1.50) and ≥10 % UACR increase (PRAL, OR: 1.23; 95% CI: 1.04-1.46) compared to individuals with lower dietary acid load. Conclusions: Higher PRAL and NEAP were associated with worse kidney function after 1 year of follow-up as measured by eGFR and UACR markers in an older Spanish population with overweight/obesity and metabolic syndrome. Keywords: albuminuria; chronic kidney disease (CKD); dietary acid load; glomerular filtration rate (GFR); kidney function; net endogenous acid production (NEAP); potential renal acid load (PRAL); renal nutrition

    Longitudinal association of dietary acid load with kidney function decline in an older adult population with metabolic syndrome

    Get PDF
    Background: Diets high in acid load may contribute to kidney function impairment. This study aimed to investigate the association between dietary acid load and 1-year changes in glomerular filtration rate (eGFR) and urine albumin/creatinine ratio (UACR). Methods: Older adults with overweight/obesity and metabolic syndrome (mean age 65 ± 5 years, 48% women) from the PREDIMED-Plus study who had available data on eGFR (n = 5,874) or UACR (n = 3,639) at baseline and after 1 year of follow-up were included in this prospective analysis. Dietary acid load was estimated as potential renal acid load (PRAL) and net endogenous acid production (NEAP) at baseline from a food frequency questionnaire. Linear and logistic regression models were fitted to evaluate the associations between baseline tertiles of dietary acid load and kidney function outcomes. One year-changes in eGFR and UACR were set as the primary outcomes. We secondarily assessed ≥ 10% eGFR decline or ≥10% UACR increase. Results: After multiple adjustments, individuals in the highest tertile of PRAL or NEAP showed higher one-year changes in eGFR (PRAL, β: –0.64 ml/min/1.73 m2; 95% CI: –1.21 to –0.08 and NEAP, β: –0.56 ml/min/1.73 m2; 95% CI: –1.13 to 0.01) compared to those in the lowest category. No associations with changes in UACR were found. Participants with higher levels of PRAL and NEAP had significantly higher odds of developing ≥10% eGFR decline (PRAL, OR: 1.28; 95% CI: 1.07–1.54 and NEAP, OR: 1.24; 95% CI: 1.03–1.50) and ≥10 % UACR increase (PRAL, OR: 1.23; 95% CI: 1.04–1.46) compared to individuals with lower dietary acid load. Conclusions: Higher PRAL and NEAP were associated with worse kidney function after 1 year of follow-up as measured by eGFR and UACR markers in an older Spanish population with overweight/obesity and metabolic syndrome

    Fruit and Vegetable Consumption is Inversely Associated with Plasma Saturated Fatty Acids at Baseline in Predimed Plus Trial

    Get PDF
    I.D.-L. is supported by the [FI_B 00256] from the FI-AGAUR Research Fellowship Program, Generalitat de Catalunya and M.M.-M is supported by the FPU17/00513 grant. a.-H. is supported by the [CD17/00122] grant and S.K.N. is supported by a Canadian Institutes of Health Research (CIHR) Fellowship. We also thank all the volunteers for their participation in and the personnel for their contribution to the PREDIMED-Plus trial. This research was funded by CiCYT [AGL2016-75329-R] and CIBEROBN from the Instituto de Salud Carlos III, ISCIII from the Ministerio de Ciencia, Innovacion y Universidades, (AEI/FEDER, UE), Generalitat de Catalunya (GC) [2017SGR196]. The PREDIMED-Plus trial was supported by the official Spanish Institutions for funding scientific biomedical research, CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn) and Instituto de Salud Carlos III (ISCIII), through the Fondo de Investigacion para la Salud (FIS), which is co-funded by the European Regional Development Fund (four coordinated Fondo de Investigaciones Sanitarias projects lead by J.S.-S. and J.V., including the following projects: PI13/00673, PI13/00492, PI13/00272, PI13/01123, PI13/00462, PI13/00233, PI13/02184, PI13/00728, PI13/01090, PI13/01056, PI14/01722, PI14/00636, PI14/00618, PI14/00696, PI14/01206, PI14/01919, PI14/00853, PI14/01374, PI14/00972, PI14/00728, PI14/01471, PI16/00473, PI16/00662, PI16/01873, PI16/01094, PI16/00501, PI16/00533, PI16/00381, PI16/00366, PI16/01522, PI16/01120, PI17/00764, PI17/01183, PI17/00855, PI17/01347, PI17/00525, PI17/01827, PI17/00532, PI17/00215, PI17/01441, PI17/00508, PI17/01732, PI17/00926 and PI19/00781), the Especial Action Project entitled Implementacion y evaluacion de una intervencion intensiva sobre la actividad fisica Cohorte PREDIMED-Plus grant to J.S.-S., European Research Council (Advanced Research Grant 2014-2019, 340918) to M.a.M.-G., the Recercaixa grant to J.S.-S. (2013ACUP00194), grants from the Consejeria de Salud de la Junta de Andalucia (PI0458/2013, PS0358/2016, and PI0137/2018), a grant from the Generalitat Valenciana (PROMETEO/2017/017), a SEMERGEN grant, Fundacio la Marato de TV3 (PI044003), 2017 SGR 1717 from Generalitat de Catalunya, a CICYT grant provided by the Ministerio de Ciencia, Innovacion y Universidades (AGL2016-75329-R), and funds from the European Regional Development Fund (CB06/03 and CB12/03). Food companies Hojiblanca (Lucena, Spain) and Patrimonio Comunal Olivarero (Madrid, Spain) donated extra virgin olive oil, and the Almond Board of California (Modesto, CA, USA), American Pistachio Growers (Fresno, CA, USA), and Paramount Farms (Wonderful Company, LLC, Los Angeles, CA, USA) donated nuts. J.K. was supported by the "FOLIUM" program within the FUTURMed project entitled Talent for the medicine within the future from the Fundacio Institut d'Investigacio Sanitaria Illes Balears. This call was co-financed at 50% with charge to the Operational Program FSE 2014-2020 of the Balearic Islands. This work is partially supported by ICREA under the ICREA Academia programme to J.S.-S.Scope: Plasma fatty acids (FAs) are associated with the development of cardiovascular diseases and metabolic syndrome. The aim of our study is to assess the relationship between fruit and vegetable (F&V) consumption and plasma FAs and their subtypes. Methods and Results: Plasma FAs are assessed in a cross-sectional analysis of a subsample of 240 subjects from the PREDIMED-Plus study. Participants are categorized into four groups of fruit, vegetable, and fat intake according to the food frequency questionnaire. Plasma FA analysis is performed using gas chromatography. Associations between FAs and F&V consumption are adjusted for age, sex, physical activity, bodymass index (BMI), total energy intake, and alcohol consumption. Plasma saturated FAs are lower in groups with high F&V consumption (-1.20 mg cL−1 [95% CI: [-2.22, - 0.18], p-value = 0.021), especially when fat intake is high (-1.74 mg cL−1 [95% CI: [-3.41, -0.06], p-value = 0.042). Total FAs and n-6 polyunsaturated FAs tend to be lower in high consumers of F&V only in the high-fat intake groups. Conclusions: F&V consumption is associated with lower plasma saturated FAs when fat intake is high. These findings suggest that F&V consumption may have different associations with plasma FAs depending on their subtype and on the extent of fat intake.Generalitat de Catalunya FI_B 00256Canadian Institutes of Health Research (CIHR)Consejo Interinstitucional de Ciencia y Tecnologia (CICYT)European Commission AGL2016-75329-RCIBEROBN from the Instituto de Salud Carlos III ISCIII from the Ministerio de Ciencia, Innovacion y Universidades, (AEI/FEDER, UE)Generalitat de Catalunya 2017SGR196CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn)Instituto de Salud Carlos III (ISCIII), through the Fondo de Investigacion para la Salud (FIS)European Commission PI13/00673 PI13/00492 PI13/00272 PI13/01123 PI13/00462 PI13/00233 PI13/02184 PI13/00728 PI13/01090 PI13/01056 PI14/01722 PI14/00636 PI14/00618 PI14/00696 PI14/01206 PI14/01919 PI14/00853 PI14/01374Especial Action Project entitled Implementacion y evaluacion de una intervencion intensiva sobre la actividad fisica Cohorte PREDIMED-Plus grantEuropean Research Council (ERC) European Commission 340918Recercaixa grant 2013ACUP00194Junta de Andalucia PI0458/2013 PS0358/2016 PI0137/2018Generalitat Valenciana European Commission PROMETEO/2017/017SEMERGEN grant, Fundacio la Marato de TV3 PI044003Generalitat de Catalunya 2017 SGR 1717Ministerio de Ciencia, Innovacion y Universidades AGL2016-75329-R"FOLIUM" program within the FUTURMed project within Fundacio Institut d'Investigacio Sanitaria Illes BalearsICREA under the ICREA Academia programmeThe European Regional Development Fund PI17/01347 PI17/00525 PI17/01827 PI17/00532 PI17/00215 PI17/01441 PI17/00508 PI17/01732 PI17/00926 PI19/00781 CB06/03 CB12/03European Commission PI14/00972 PI14/00728 PI14/01471 PI16/00473 PI16/00662 PI16/01873 PI16/01094 PI16/00501 PI16/00533 PI16/00381 PI16/00366 PI16/01522 PI16/01120 PI17/00764 PI17/01183 PI17/00855 FPU17/00513 CD17/0012
    corecore